If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+6x-3780=0
a = 4; b = 6; c = -3780;
Δ = b2-4ac
Δ = 62-4·4·(-3780)
Δ = 60516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{60516}=246$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-246}{2*4}=\frac{-252}{8} =-31+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+246}{2*4}=\frac{240}{8} =30 $
| 4-r=-3r-12 | | 8y+15+6y-3=180 | | 4^-n=1/256 | | 4^-n=256 | | 6x–4(3–2x)=5(x–4)–7 | | (X)=-9x+1 | | 3x-2=x6 | | 3(m+5)-6=3 | | 2*(x-10)/(15+6x)=1 | | a^-225=0 | | x=(5/9)(x-32) | | x=(5/9)(x-32 | | 4x+5=(x+1)-x | | F(x)=5(10)-9 | | 147-3h2=0 | | n(n-7)=16 | | 1+n=7+2n | | -3+6n=5n+5 | | (2x-10)+(x-15)=95 | | 2x+12=3‐x | | 2x+x+8=80 | | 7x+9=23. | | a-2.5=4,5 | | -1+6x=5-2(1-3x) | | 4x-2=6x-32 | | 10+x+2x=70 | | -8-2n=1+7n | | 1(x-1)-3=8(x+2) | | 6x=50/3 | | 2x²+14x-1=0 | | (4x+1)=(5x-10) | | 122=5^n-3 |